UltraGrid: Low-Latency High-Quality Media Transmissions on Commodity Hardware

Petr Holub
CESNET z.s.p.o., Prague/Brno, Czech Republic

<Petr.Holub@cesnet.cz>

Network Performing Arts Production Workshop (NPAPW) 2014
Miami, 2014–04–27
Overview

Introduction

UltraGrid Features

UltraGrid Community

What’s New?

About the Demo

Current & Future Development
Concert from HAMU, Prague

Ondřej Kabrňa

http://www.ondrejkabrna.com/

Jazz Piano Standards
What is UltraGrid?

- Affordable platform for high-quality interactive video transmissions using commodity hardware
 - high-resolution video: HD, 4K, 8K
 - as low latency as possible on commodity hardware
 - commodity equipment
 - Linux, Mac, Windows
 - common GPUs and video capture cards
 - open-source software, dual BSD/GPL license
 - UltraGrid itself is BSD-licensed, may become “GPL infected” (e.g., x264)
 - picks up where common videoconferencing ends
 - 10 Mbps – 10 Gbps (or more)
Who Is UltraGrid For?

- “Power users”
 - scientific visualizations
 - medicine: X-ray imagery, cardiology, surgery, emergency medicine training support, pathology, …
 - education: remote lecturing
 - arts, cinematography, broadcasting
 - collaborative environments: multi-point operation
 - many others
Who Is UltraGrid For?

- Researchers
 - experimental validation of your research results
 - Holub et al.: real-time image processing algorithms
 - Perkins et al.: network protocols, congestion control,…
 - Holub & Rudová et al.: data distribution models & scheduling
 - Renambot et al.: image compression & large scale visualization systems
 - Hutana et al.: distributed visualization systems
Bandwidth – Latency – Commoditization

- CESNET MVTP-4K
 - custom hardware
 - <1 ms latency SDI → IP → SDI: uncompressed, local network
 - 1–10 Gbps, depending on video format

- LoLa
 - specialized hardware for PC hardware
 - 2 ms audio latency, 10 ms video latency
 - 100–1000 Mbps, depending on video format
 - (Claudio, feel free to correct :)

- UltraGrid
 - commodity hardware
 - <10 ms audio latency, 70–150 ms video latency depending on hardware and compression
 - 10 Mbps–10 Gbps, depending on video format, compression, etc.
UltraGrid for Medicine

...on special request

- Cardiosurgery
 - detailed view from the HD cameras

- Angiology
 - real-time composition of various modalities on 4K screens: X-ray, FFR, OCT
 - image anonymization is a must
UltraGrid for Medicine
...on special request
History of UltraGrid

- History of Development
 - 2005–2012: CESNET (→ 1080i)
 - 2006–2008: forks by KISTI (GUI, AJA KONA) and i2cat (SAGE)
 - 2013: i2cat starts contributes to common codebase maintained by CESNET

- Some milestones
 - 2002: 720p
 - 2005: 1080i, multipoint
 - 2007: CPU compressions, self-organization, optical multicast
 - 2008: 2K/4K
 - 2011: GPU compressions
 - 2012: 8K
World Firsts…

- 2005 – Multi-Point Uncompressed HD

- iGrid 2005 – two independent n-way demos
 - UltraGrid: using packet reflectors
 - iHDTV: multicast
World Firsts…

- 2007 – Self-Organizing Multi-Point Uncompressed/Compressed HD
 - with CoUniverse
 - self-organizing multi-point distribution setup with uncompressed/DXT1 compression switching based on available bandwidth
World Firsts…

- 2012 – GPU-JPEG Transatlantic Multi-Point 8K
 - from pre-rendered sources
 - JPEG → DXT5-YCoCg on a single machine
 - useful also as 16× HD (multi-camera setups)
Features of UltraGrid

- Supported video formats
 - HD, 2K
 - 4K – tiled or native
 - 8K – experimental, problems with available sources
 - (almost) arbitrary video resolution
 - multichannel video (e.g., 3D HD, 4K)

- Uncompressed vs. compressed
 - only interested in low-latency compression
 - GLSL-accelerated DXT1, DXT5-YCoCg
 - CUDA-accelerated JPEG, DXT5-YCoCg
 - CPU-based low-latency H.264 via x264 & libavcodec
 - that’s when UltraGrid becomes GPL
Features of UltraGrid

- Video input
 - capture cards: HD/3G/6G-SDI, SDI, HDMI (incl. stereoscopic HDMI 1.4a), analog HD and SD
 - vendor SDKs: Blackmagic, DeltaCast, BlueFish444
 - vendor-independent: Video4Linux2, QuickTime, DirectShow
 - screen capture input
 - beware of cursor – may be lost, depending on the API
 - testcard
 - file input
- Video output
 - playback cards: HD/3G/6G-SDI, SDI, HDMI (incl. stereoscopic HDMI 1.4a), analog HD and SD
 - best for displaying interlaced video
 - computer screen output (OpenGL, SDL)
 - SAGE output
 - file output
 - specialized display filters
Features of UltraGrid

- Video processing
 - deinterlacer
 - software video mixer with overlay support
 - probably the only affordable real-time mixer with scaling support for 4K right now
 - logo overlay
Features of UltraGrid

- **Audio**
 - balanced, unbalanced
 - standalone (sound card) or embedded (in HD-SDI, HDMI)
 - various system interfaces including JACK
- **Supported audio formats**
 - various sample rates, multi-channel
- **Uncompressed vs. compressed**
 - uncompressed by default
 - OPUS codec compression available
- **Synchronization of audio with video**
 - depends on the source, if it is synchronized
 - synchronized when using HD-SDI and HDMI as audio source
 - audio is transmitted with as low latency as possible when using standalone soundcard
Features of UltraGrid

- Network transmission format – extended RTP
 - IP/UDP/RTP is used as the basic format
 - backward compatible with RTP tools, e.g., for monitoring
 - extended application headers for additional flexibility
 - extended packet numbering
 - flexible specification of media parameters, format, compression, etc.
 - notion of “buffer position” – does not depend on uncompressed structure as RFC 4175
Range of Applicability

Bandwidth

- HD (1080p @ 30p)
 - H.264: 10–50 Mbps
 - M-JPEG: 50–200 Mbps
 - uncompressed: 1–2.2 Gbps
- 4K (2160p @ 30p)
 - H.264: 30–100 Mbps
 - M-JPEG: 150–600 Mbps
 - uncompressed: 4–9 Gbps
- 8K (4320p)
 - M-JPEG: 500 Mbps–2 Gbps
 - (uncompressed: >10 Gbps)
- 1–3× for Forward Error Correction (FEC)
Range of Applicability

Lantecy

- End-to-end latency (capture to playback) in local network
 - <150 ms for interactivity: ITU-T rec G.114
- Video
 - depends on capture/playback hardware: 1.75–5.5 frames (58–183 ms)
 - e.g., ≈ 2 frames: BlackMagic Decklink HD Extreme → OpenGL on MacOS x
- Audio
 - video embedded: synchronous
 - independent source/playback: 20 ms or less
Video Compression

- GPU-accelerated compression schemes
 - JPEG: NVidia CUDA based (http://gpujpeg.sf.net/)
 - DXT1, DXT5: OpenGL Shader Language (GLSL) based
 - DXT5: NVidia CUDA based (for 8K)
- CPU compression
 - H.264
 - DXT1: CPU-based (FastDXT library from EVL)

SAGE display with various compressions
Video Compression

- Performance numbers (including transfer to/from GPU)
 - DXT1 GLSL: 798 Mpix/s (NVidia 580GTX), 593 Mpix/s (ATI 6990)
 - DXT5 GLSL: 349 Mpix/s (NVidia 580GTX), 305 Mpix/s (ATI 6990)
 - JPEG CUDA: up to 1.580 Mpix/s = 4.740 MB/s (NVidia 580GTX, 4:4:4, Q=60)
 - DXT5 CUDA: ≥1.580 Mpix/s (NVidia 580GTX)

(c) Encoder performance (both CPU and GPU)
(d) Decoder performance (both CPU and GPU)
CPU-Based H.264

- X264 library provides low-latency H.264 mode
 - no B-frames are used
 - distributed I-frames to avoid bandwidth spikes
- Practical usability
 - HD @ 30p: 4 core Core i7 system
 - 4K @ 30p: 12 core Intel Xeon system
- X264 library is GPL or commercially licensed
 - UltraGrid becomes GPL when linked with it
 - commercial license can be obtained for commercial projects
Latency Impact of Compression

- Uncompressed for DeckLink HD → DeltaCast 3G
 - 2.5 frames (83 ms)
- Impact of compressions
 - 2.5 frames (+<16.7 ms) for CUDA JPEG
 - 3.5 frames (+33.3 ms) for GLSL DXT1/5
 - \(\approx \) 5 frames (+83.3 ms) for H.264
Quality Impact of Compression

- **ABX testing of M-JPEG**
 - test of distinguishability of uncompressed vs. compressed video
 - GPU JPEG (with precise DCT transforms – no color casts)
 - setup in native environment for give application

- **Angiology:**
 - \(Q \geq 90 \) undistinguishable

- **Cinematography screening:**
 - \(Q \geq 80 \) undistinguishable
 - \(Q \in [60; 80) \) distinguishability substantially varied among viewers

More details in:
Forward Error Correction (FEC)

- LDGM
 - CPU and GPU implementations
 - CPU (SSE optimized) is used because of CPU ↔ GPU transmissions overhead
 - packet loss up to 10% can be mitigated with reasonable overhead
 - can make JPEG survive up to 25% packet loss

- Simple method: shifted multiplication
 - used for audio by default
User-Empowered Multi-Point Distribution

- UltraGrid supports multicast, but...
 - how available/dependable it is?
- UDP packet reflectors
 - controlled by the user
 - lower efficiency
 - possible per-user processing: transcoding, security,…
- Transcoding reflectors
 - per user processing, individual quality adjustments
- Self-organization of the network
 - research problem: scheduling streams with bitrates comparable to capacity of links
 - CoUniverse framework (http://couniverse.sitola.cz)
Users Worldwide

- Distribution:
 - source, binaries (http://www.ultragrid.cz/, SourceForge)
 - embedded in SAGE (http://www.sagecommons.org/)

- Installations around the world:
 - Czech Republic (universities and university hospitals), USA (UCSD, UMich, UIC, Internet2, NLM/NIH, NorthwesternU, ...), Spain (i2cat, UPM), Portugal (FCCN), Netherlands (SARA), Poland (PSNC), Korea (KISTI), Russia, Germany (H-BRS), Japan (AIST),...
Open-Source Development Model

- Why?
 - because it allows to implement your research

- Contributors
 - current: CESNET, Masaryk University, i2cat, EVL UIC
 - past: ISI EAST, CCT LSU, SARA

- Benevolent dictators for life
 - we review before accepting/committing
 - to maintain and improve code quality
 - we welcome your contributions!
What’s New? – Release 1.2

- MS Windows support
- New hardware support
 - capture cards: DELTACAST, BlueFish444
- File-based I/O
- Transcoding reflector
- Integration of 2-camera GColl
 - group-to-group communication with partial gaze awareness
 - experimental
- Software video mixer
 - up to 4K video in real-time
- Image anonymization (for medical apps)
- Current software echo canceller deprecated
 - problem with frequency drift of common sound cards
Overview

Introduction

UltraGrid Features

UltraGrid Community

What’s New?

About the Demo

Current & Future Development
Demo Scheme

HAMU, Prague
Running the Demo

- **UltraGrid setup @ HAMU in Prague:**
  ```
  uv -t decklink:1:24 -s embedded -d decklink:0 -r analog \\ 
  -c JPEG:80 --audio-capture-channels 2 -l 500M \\ 
  -f ldgm:1000:500 codec3.nws.edu
  ```

- **UltraGrid setup @ NWS in Miami:**
  ```
  uv -t v4l2:/dev/video0:MJPG:1920:1080:1/30 \\ 
  -s alsa:sysdefault:card=MTrak -r alsa:sysdefault \\ 
  -d gl 195.113.75.245
  ```
Overview

Introduction

UltraGrid Features

UltraGrid Community

What’s New?

About the Demo

Current & Future Development
Ongoing Development

- GPU-based LDGM FEC
 - CUDA-based
 - works up to uncompressed 4K
 - extended performance and configuration profiling
 - to be submitted into Future Generation Computer Systems journal
- New implementation of video mixer – with i2cat
 - to avoid OpenGL/GLSL readback performance problems
 - based on OpenCV with OpenCL acceleration
Ongoing Development

- CoUniverse
 - self-organization of complex multi-point scenarios incl. transcoding
 - research work that slowly moves into production
- Reimplementation of the UltraGrid core
 - increased modularity and flexibility
 - better maintainability – C++
Future Development Plans

- Real-time image analysis
 - (semi)automated anonymization
 - domain-specific composition of various images
- OpenCL implementation of CUDA-based algorithms
 - we will start with LDGM
 - complex problem for complex algorithms
- Port of UltraGrid to mobile devices
 - by i2cat
 - starting with Android
- Robust software-based echo cancellation
 - problems with clock drift on sound cards
Selected Papers

Thank you for your attention!

UltraGrid support: <ultragrid-dev@cesnet.cz>
Petr Holub: <petr.holub@cesnet.cz>

This work is supported by LM2010005 project.